<table>
<thead>
<tr>
<th>Mûde d'Évaluation</th>
<th>Matière</th>
<th>Unité ou SINGLE</th>
<th>Élément de Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Sciences des Ingénieurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Microfotographie, Miroirs et Technologies de l'Analyse Biomédicale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.B.

Le correcteur est tenu de respecter à la lettre les consignes relatives aux répartitions des notes indiquées sur les éléments de correction.
Documents réponses

SEV 01 :

Tâche 1.1 : Étude fonctionnelle de l’élévateur de palettes.

a- Compléter, en se basant sur la présentation du support (page 2/17), le diagramme « bête à cornes » du système étudié :

A qui rend-t-il service ?

Utilisateur

Sur quoi agit-il ?

Palettes chargée ou pile de palettes

Dans quel but ?

FP : Permettre de monter/descendre en toute sécurité des palettes entre deux ou plusieurs niveaux définis suivant un axe vertical

b- Compléter, par les solutions technologiques proposées (page 2/17 et DRES pages 12/17, 13/17 et 14/17), le FAST suivant :

FP

FT1 : Placer une pile de palettes ou une palette chargée sur le coulisseau

Chariot élévateur Transpalette Convoyeur à rouleaux

Moteur électrique

FT2 : Entraîner le coulisseau verticalement

FT21 : Convertir l’énergie électrique en énergie mécanique de rotation

Moteur électrique

FT22 : Transmettre l’énergie mécanique de rotation avec absorption et amortissement des irrégularités de couple

Accouplement élastique

FT23 : Adapter l’énergie en augmentant le couple et en réduisant la vitesse

Réducteur à engrenages à denture hélicoïdale

FT24 : Protéger contre les surcouples

Limiteur de couple

FT25 : Transformer le mouvement de rotation en mouvement de translation

Pignon-Chaîne simple

FT26 : Guider le coulisseau en translation

Galets + Rails

FT27 : Arrêter le mouvement vertical du coulisseau

Frein

FT3 : Gérer le mouvement vertical du coulisseau

FT31 : Détecter les limites du mouvement du coulisseau

Capteurs de fin de course ILS

Tâche 1.2 : Analyse technique de l’élévateur de palettes.

a- Donner, en analysant les données des DRES pages 13/17 et 14/17, le nom complet du frein utilisé dans l’élévateur de palettes en indiquant le type de frein et le type de sa commande :

Frein (à disque) progressif à friction plane à commande électromagnétique
b- Compléter le tableau de fonctionnement du frein, en se référant aux DRES pages 13/17 et 14/17 et en utilisant les termes (donnés en désordre) de la liste suivante : Non – En contact - Comprimé - Attiré - Séparées - Oui - Poussé - Non comprimé.

<table>
<thead>
<tr>
<th>Plateau mobile (20)</th>
<th>Ressort (25)</th>
<th>(18), (19+30) et (20)</th>
<th>Freinage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobine non alimentée</td>
<td>Poussé</td>
<td>Non comprimé</td>
<td>Oui</td>
</tr>
<tr>
<td>Bobine alimentée</td>
<td>Attiré</td>
<td>Comprimé</td>
<td>Séparées</td>
</tr>
</tbody>
</table>

0,25 pt par réponse juste /2pts

c- Citer deux avantages des engrenages à denture hélicoïdale utilisés dans le réducteur :
- Engrènement plus progressif ; Plus silencieux ; Transmission d’efforts plus importants à vitesses élevées ;
- Atténuation des vibrations ; réalisation facile d’un entraîne imposé en faisant varier l’angle d’hélice

1 pt par réponse juste /1pt

d- Relier, par une flèche, l’organe ou l’ensemble au nom technologique qui lui correspond :

<table>
<thead>
<tr>
<th>L’organe ou l’ensemble</th>
<th>Le nom technologique qui lui correspond</th>
</tr>
</thead>
<tbody>
<tr>
<td>(48+50+52+55+56+57+58+59)</td>
<td>E : Embrayage à disques</td>
</tr>
<tr>
<td></td>
<td>Accouplement rigide</td>
</tr>
<tr>
<td></td>
<td>Accouplement élastique</td>
</tr>
<tr>
<td></td>
<td>Limiteur de couple à ressort de compression</td>
</tr>
<tr>
<td></td>
<td>Limiteur de couple à rondelles élastiques « Belleville »</td>
</tr>
<tr>
<td></td>
<td>Roue libre à rouleau</td>
</tr>
</tbody>
</table>

1 pt par liaison juste /4pts

e- Compléter, en se référant aux DRES pages 12/17, 13/17 et 14/17, le schéma cinématique minimal simplifié par les symboles des liaisons mécaniques manquantes (L1, L2, L3 et L4) :

1 pt par liaison juste /4pts
Tâche 1.3 :

a- La montée et la descente du coulisseau de l’élévateur à palette sont assurées par un moteur-frein asynchrone triphasé M à deux sens de rotation commandé par deux contacteurs KM1 (pour la montée) et KM2 (pour la descente). Compléter sur le schéma ci-dessous :

a-1- le câblage du circuit de puissance du moteur-frein M à deux sens de rotation :

a-2- le câblage du circuit de commande du contacteur KM2 assurant la descente du coulisseau :

b- Déduire l’équation logique de KM1 :

\[KM1 = \overline{F} \cdot \overline{Q} \cdot \overline{A_r} \cdot (S1 + km1) \]

0,5 pt

Circuit de commande

0,5 pt

Circuit de puissance

0,5 pt

Sectionneur

0,5 pt

Contacteur

0,5 pt

KM1

0,5 pt

FREIN EM

KM2

Sectionneur Q

Contacteur

R T

M

F

Ressort de rappel

km1

km2

S1

S2

KM1

KM2

Ar

N

0,5 pt

0,5 pt

0,5 pt

0,5 pt

0,25 pt par ligne

Entrées km1 Sorties par (1 ou 0)

S1 Ar km1=0 km1=1 km1=0 km1=1 km1=0 km1=1 km1=0 km1=1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0,5 pt

0,5 pt

0,5 pt

0,5 pt

1 pt

1 pt

d- Compléter le chronogramme du contacteur KM1 et du moteur-frein M selon les états de Ar et de S1: 1 pt
Tâche 2.1 : (Prendre deux chiffres après la virgule dans tous les calculs de cette tâche)

a- Déterminer la fréquence de la poulie motrice \(N_{pc} \) (en tr/min), que doit avoir le pignon moteur à chaîne (49) de diamètre primitif \(D_p = 192,02 \) mm, pour que la chaîne simple assure un déplacement vertical de la charge totale à une vitesse \(V_{LC} = 0,5 \) m/s :

\[
\text{On a : } V_{LC} = R_p \times \omega_{pc} \text{ avec } R_p : \text{rayon du pignon moteur (X) et } \omega_{pc} : \text{sa vitesse angulaire.}
\]

\[
\text{Aussi, } \omega_{pc} = \frac{\pi N_{pc}}{30} \quad \text{donc : } N_{pc} = \frac{30 \cdot 2 \cdot V_{LC}}{\pi \cdot D_p} \quad A.N : N_{pc} = \frac{30 \cdot 2 \cdot 0,5}{\pi \cdot 192,02 \cdot 10^{-3}} = 49,73 \text{ tr/min}.
\]

b- Déduire, en considérant qu’il n’y a pas de glissement entre les surfaces actives du limiteur de couple, la vitesse de rotation \(N_{lc} \) (en tr/min) du limiteur de couple et la vitesse de rotation \(N_r \) (en tr/min) de l’arbre de sortie du réducteur (60) :

\[
N_{pc} = N_{lc} = N_r = 49,73 \text{ tr/min}.
\]

c- Calculer, en utilisant la page 5/17 et les DRES pages 13/17 et 14/17, le rapport de réduction \(r \) du réducteur :

\[
r = \frac{n_{z\text{menantes}}}{n_{z\text{menisces}}} = \frac{Z_{30} \times Z_{35}}{Z_{31} \times Z_{41}} \quad A.N : r = \frac{15 \times 20}{100 \times 60} = 0,05
\]

\[
\text{donc } N_E = \frac{N_r}{r} = 50 \text{ tr/min} \quad A.N : N_r = \frac{50}{0,05} = 1000 \text{ tr/min}
\]

d- Déterminer, en prenant pour la suite du calcul la vitesse de rotation \(N_r = 50 \) tr/min et \(r = 0,05 \), la vitesse de rotation \(N_E \) (en tr/min) de l’organe \(E \) et déduire celle du moteur \(N_m \) (en tr/min) :

\[
r = \frac{N_r}{N_E} = 0,05 \quad \text{donc } N_E = \frac{N_r}{0,05} = 1000 \text{ tr/min}
\]

e- Déterminer, en utilisant les hypothèses et la modélisation des DRES pages 14/17 et 15/17 et en appliquant le principe fondamental de la dynamique en translation en projection sur l’axe \(\hat{Z} \) à l’ensemble (coulisseau + palette chargée), l’intensité de l’effort \(F_u \) (en N) utile à la chaîne pour déplacer de bas vers le haut la charge totale \(M_{CT} \) à l’accélération limite en charge \(\gamma_c = 0,5 \text{ m/s}^2 \) :

\[
P.F.D \text{ appliqué à l’ensemble (coulisseau + palette chargée) en projection sur } \hat{Z} : F_u = P_{CT} = M_{CT} \times \gamma_c
\]

\[
\text{Donc } F_u = P_{CT} + M_{CT} \times \gamma_c = (M_{CT} \times g) + (M_{CT} \times \gamma_c) = M_{CT} \times (g + \gamma_c)
\]

\[
A.N : F_u = 800 \times (10 + 0,5) = 8400 \text{ N}
\]

f- Déduire, en négligeant le frottement dans la liaison glissière assurant le guidage en translation du coulisseau par rapport au bâti, la puissance utile \(P_u \) (en kW) développée par l’effort \(F_u \) utile à la chaîne simple pour déplacer de bas vers le haut la charge totale à la vitesse \(V_{LC} = 0,5 \) m/s :

\[
P_u = F_u \times V_{LC}
\]

\[
A.N : P_u = 8400 \times 0,5 = 4200 \text{ W} \quad \text{d’où } P_u = 4,20 \text{ kW}
\]

g- Calculer, selon l’agencement de la chaîne de transmission de puissance dans l’élévateur de palettes DRES page 14/17, le rendement global de la transmission \(\eta_g \) :

\[
\eta_g = \eta_1 \times \eta_2 \times \eta_3 \times \eta_4
\]

\[
A.N : \eta_g = 0,90 \times 0,92 \times 0,95 \times 0,98 = 0,77
\]

h- Déduire, en prenant pour la suite du calcul \(P_u = 4,20 \) kW et \(\eta_g = 0,77 \), la puissance mécanique \(P_m \) (en kW) à fournir par le moteur-frein :

\[
\text{On a : } \eta_g = \frac{P_u}{P_m} \quad \text{donc } P_m = \frac{P_u}{\eta_g} \quad A.N : P_m = \frac{4,20}{0,77} = 5,45 \text{ kW}
\]

i- Choisir, à partir du DRES page 15/17, la désignation du moteur électrique convenable optimal :

\[
\text{La désignation du moteur électrique convenable optimal est : BA 132 MB6}
\]

Tâche 2.2 : En utilisant les données relatives à cette tâche DRES page 15/17, déterminer quelques paramètres de la chaîne simple. Pour ce faire, on vous demande de :

a- Proposer, en suivant l’exemple donné sur l’abaque de sélection, le pas de la chaîne simple à choisir pour transmettre la puissance de sélection à la fréquence de rotation du pignon moteur :

\[
\text{Le pas de la chaîne simple à choisir est : } P=31,75 \text{ mm}
\]
Le mode de fonctionnement des chaînes (fatigue) fait que pour choisir convenablement une chaîne il suffit de comparer sa charge de rupture \(\mathbf{R} \), indiquée dans les catalogues constructeurs, à l’effort de tension maximal \(F_{\text{max}} \) pondéré par un coefficient de sécurité \(K = \frac{R}{F_{\text{max}}} \), tel que \(K \) doit-être compris entre 5 et 20.

b- Relever, à partir de l’extrait du catalogue constructeur, les références de la chaîne (N° ISO et Réf. Brampton), la valeur de sa résistance à la rupture \(\mathbf{R} \) et conclure sur sa validité si \(F_{\text{max}} = 9000 \) N : /1,5pt

Références de la chaîne : N° ISO : 20B1 ; Réf. Brampton : B 10103
\[F_{\text{max}} = 95000 \text{ N} \quad (0.5 \text{ pt}) \]

\[\text{Conclusion : } K = \frac{95000}{9000} = 10.55 \text{ donc la chaîne choisie est valable.} \quad (0.5 \text{ pt}) \]

c- Déterminer, en utilisant les données du DRES page 15/17, la longueur de la chaîne \(L_m \) (en maillons) en nombre pair, juste nécessaire pour assurer la course exigée par le cahier de charges : /1pt

\[
L_m = \frac{Z_m + Z_r + 2C + Y}{2}
\]

\[L_m = \frac{19 + 19}{2} + \frac{2 \times 9500}{31.75} + Y = 19 + 59842 + Y = 618 \text{ maillons avec } Y = 0.58 \]

Tâche 2.3 : Étant données les conditions de fonctionnement (démarrages fréquents et variations d’effort en fonctionnement), il est utile de vérifier la clavette (51), participant à la liaison complète démontable entre le moyeu du limiteur de couple (48) et l’arbre de sortie du réducteur (60), au cisaillement (entre autres). En utilisant les données du DRES page 15/17, on vous demande de :

a- Calculer l’intensité de l’effort tangentiel \(\| \mathbf{T} \| \) (en N) résultant sur la clavette lors de la transmission du couple \(C_r \) entre le moyeu du limiteur de couple (48) et l’arbre de sortie du réducteur (60) : /1pt

\[\text{On a : } C_r = \| \mathbf{T} \| \times \frac{d}{2} \text{ donc : } \| \mathbf{T} \| = \frac{C_r}{\frac{d}{2}} \quad A.N \| \mathbf{T} \| = \frac{2 \times 870.10^3}{90} = 34800 \text{ N} \]

b- Calculer la section S sollicitée au cisaillement (en mm²), de la clavette : /1pt

\[\text{On a : } S = L \times a \quad A.N \ S = 38 \times 8 = 304 \text{ mm}^2 \]

c- Déterminer, en prenant \(\| \mathbf{T} \|=34800 \) N et \(S=304 \text{ mm}^2 \), la contrainte de cisaillement \(\tau \) (en N/mm²) : /1pt

\[\text{On a : } \tau = \frac{\| \mathbf{T} \|}{S} \quad A.N \ \tau = \frac{34800}{304} = 114,47 \text{ N/mm}^2 \]

d- Conclure sur la condition de résistance de la clavette au cisaillement : /1pt

\[\text{La condition de résistance : } \tau \leq R_{pg} \text{ et } R_{pg} = 120 \text{ N/mm}^2 \text{ donc la condition est vérifiée} \]

Tâche 2.4 : Compléter, à l’échelle de représentation des pièces, la coupe partielle B-B (DRES page 12/17) montrant la liaison complète démontable entre la chaîne simple et le coulisseau par l’intermédiaire d’une plaque attache K3 standard ISO et des vis de fixation à tête cylindrique à six pans creux. Pour cela :

a- Placer une des six vis pour assurer cette liaison complète démontable ; /1pt

b- Compléter les parties manquantes du percage et du taraudage ; /1pt

c- Compléter les hachures manquantes. /1pt
Tâche 3.1 :

a- Identifier et expliquer la désignation du matériau du support (67) DRES page 16/17:

Fonte grise à graphite lamellaire dont la résistance minimale à la rupture par extension est de 200 MPa (N/mm²)

b- Compléter le tableau ci-dessous relatif à la spécification suivante:

<table>
<thead>
<tr>
<th>Nom de la spécification</th>
<th>Type de spécification</th>
<th>Interprétation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planéité</td>
<td>Tolérance de forme</td>
<td>Une partie quelconque de la surface F1, sur une longueur de 100 mm, doit être comprise entre deux plans parallèles distants de 0,1 mm.</td>
</tr>
</tbody>
</table>

c- Compléter le dessin du brut capable du support (67) en indiquant les surépaisseurs d’usinage, le plan de joint et les dépouilles, sachant que l’avant trou de D₁ provient brut du moulage.

Tâche 3.2 :

a- Indiquer sur le croquis de phase, ci-contre, relatif à la phase 20 du support (67) DRES page 16/17:

<table>
<thead>
<tr>
<th>Désignation de l’opération</th>
<th>L’outil utilisé</th>
<th>La machine utilisée</th>
<th>Le vérificateur de la cote 10⁶⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainurage</td>
<td>Fraise à lamer</td>
<td>Fraiseuse</td>
<td>X</td>
</tr>
<tr>
<td>Épaulement</td>
<td>Fraise à surfacer</td>
<td>X</td>
<td>Tampon lisse</td>
</tr>
<tr>
<td>Surfaçage</td>
<td>X</td>
<td>Rectifieuse</td>
<td>Pied à coulisse 1/20</td>
</tr>
</tbody>
</table>

b- Mettre une croix dans les cases correctes relatives à l’opération d’usinage de F₁:

Voir croquis ci-contre.
Tâche 3.3 :
Étude partielle de la phase 40 : réalisation en ébauche des alésages D1 et D2 sur un tour parallèle.

a- Étudier l’outil barre d’alésage réalisant les opérations d’ébauche et demi finition des alésages D1 et D2. Pour ce faire, sur le croquis ci-dessous :

a-1- Installer les plans du référentiel en main (Pr, Ps, Pf, Po) ;

a-2- Indiquer les angles de faces orthogonaux (α₀, β₀, γ₀) et l’angle de direction d’arête Kᵣ.

b- Déduire la valeur de Kᵣ : 85°

c- Mettre une croix dans la case de la réponse correcte caractérisant l’influence de l’usure de l’outil sur les dimensions des diamètres de D1 et D2:

| Les dimensions vont augmenter | Les dimensions vont diminuer | X |

Tâche 3.4 :

a- Calculer l’intensité de la composante tangentielle de l’effort de coupe Fc (en N) résultant de l’effort de coupe exercé par la pièce sur l’outil :

\[Fc = Kc \times a \times f \quad A.N: \quad Fc = 2100 \times 2 \times 0,2 = 840 \, N \]

b- Déterminer, en prenant Fc = 850 N, la puissance Pu (en kW) utile à la coupe :

\[Pu = Fc \times Vc \quad A.N: \quad Pu = 850 \times \frac{120}{60} = 1700 \, W = 1,70 \, kW \]

c- Déduire la puissance minimale à fournir par le moteur de la machine Pm (en kW) :

\[\eta = \frac{Pu}{Pm} \quad \text{donc} \quad Pm = \frac{Pu}{\eta} \quad A.N: \quad Pm = \frac{1,70}{0,7} = 2,428 \, kW \]

d- Choisir, à partir du tableau DRES page 17/17, la référence de la machine adéquate :

Tr 03
Tâche 3.5 :
En utilisant les DRES pages 16/17 et 17/17 et les données du croquis ci-dessous :

a- Compléter le tableau suivant en indiquant pour chaque trajectoire de l’outil s’il s’agit d’un déplacement rapide ou de travail :

<table>
<thead>
<tr>
<th>Trajectoire</th>
<th>Rapide ou Travail ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM-1</td>
<td>Rapide</td>
</tr>
<tr>
<td>1-2</td>
<td>Rapide</td>
</tr>
<tr>
<td>2-3</td>
<td>Travail</td>
</tr>
<tr>
<td>3-4</td>
<td>Travail</td>
</tr>
<tr>
<td>4-5</td>
<td>Travail</td>
</tr>
<tr>
<td>5-1</td>
<td>Rapide</td>
</tr>
<tr>
<td>1-OM</td>
<td>Rapide</td>
</tr>
</tbody>
</table>

b- Établir, en mode absolu G90, le tableau des coordonnées des points de la première passe du profil de la surface R1 :

<table>
<thead>
<tr>
<th>Repère</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-30</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>-8</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>-8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>-8</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>-8</td>
<td>15</td>
</tr>
</tbody>
</table>

(c) Compléter le programme permettant l’usinage de la première passe du profil de la surface R1 :

<table>
<thead>
<tr>
<th>N°</th>
<th>Codes</th>
<th>Commentaire et organisation du programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Phase 30</td>
<td>Nom du programme</td>
</tr>
<tr>
<td>N10</td>
<td>G00 G40 G80 G90 M05 M09</td>
<td>Initialisation des données</td>
</tr>
<tr>
<td>N20</td>
<td>G00 G52 Z0</td>
<td>Mise à l’origine de la broche (OM)</td>
</tr>
<tr>
<td>N30</td>
<td>G00 X0 Y0</td>
<td>Chargement de l’outil</td>
</tr>
<tr>
<td>N40</td>
<td>T1 D1 M06</td>
<td>Réglage rotation broche sens horaire + Gamme de vitesse + Lubrification</td>
</tr>
<tr>
<td>N50</td>
<td>G97 S1590 M42 M03 M08</td>
<td>Réalisation des trajectoires</td>
</tr>
<tr>
<td>N60</td>
<td>G00 X-30 Y0 Z40</td>
<td>Point 1</td>
</tr>
<tr>
<td>N70</td>
<td>X18 Y-8 Z15</td>
<td>Point 2</td>
</tr>
<tr>
<td>N80</td>
<td>G01 G94 F47 Z6</td>
<td>Point 3</td>
</tr>
<tr>
<td>N90</td>
<td>G94 F95 X55</td>
<td>Point 4</td>
</tr>
<tr>
<td>N100</td>
<td>Z15</td>
<td>Point 5</td>
</tr>
<tr>
<td>N110</td>
<td>G00 X-30 Y0 Z40</td>
<td>Point 1</td>
</tr>
<tr>
<td>N120</td>
<td>G77 N10 N30</td>
<td>Retour OM</td>
</tr>
<tr>
<td>N130</td>
<td>M02</td>
<td>Fin du programme</td>
</tr>
</tbody>
</table>